Methods for Linear and Differential Cryptanalysis of Elastic Block Ciphers
نویسندگان
چکیده
The elastic block cipher design employs the round function of a given, b-bit block cipher in a black box fashion, embedding it in a network structure to construct a family of ciphers in a uniform manner. The family is parameterized by block size, for any size between b and 2b. The design assures that the overall workload for encryption is proportional to the block size. When considering the approach taken in elastic block ciphers, the question arises as to whether cryptanalysis results, including methods of analysis and bounds on security, for the original fixed-sized cipher are lost or, since original components of the cipher are used, whether previous analysis can be applied or reused in some manner. With this question in mind, we analyze elastic block ciphers and consider the security against two basic types of attacks, linear and differential cryptanalysis. We show how they can be related to the corresponding security of the fixed-length version of the cipher. Concretely, we develop techniques that take advantage of relationships between the structure of the elastic network and the original version of the cipher, independently of the cipher. This approach demonstrates how one can build upon existing components to allow cryptanalysis within an extended structure (a topic which may be of general interest outside of elastic block ciphers). We show that any linear attack on an elastic block cipher can be converted efficiently into a linear attack on the fixed-length version of the cipher by converting the equations used to attack the elastic version to equations for the fixed-length version. We extend the result to any algebraic attack. We then define a general method for deriving the differential characteristic bound of an elastic block cipher using the differential bound on a single round of the fixed-length version of the cipher. The structure of elastic block ciphers allows us to use a state transition method to compute differentials for the elastic version from differentials of the round function of the original cipher.
منابع مشابه
A new method for accelerating impossible differential cryptanalysis and its application on LBlock
Impossible differential cryptanalysis, the extension of differential cryptanalysis, is one of the most efficient attacks against block ciphers. This cryptanalysis method has been applied to most of the block ciphers and has shown significant results. Using structures, key schedule considerations, early abort, and pre-computation are some common methods to reduce complexities of this attack. In ...
متن کاملImpossible Differential Cryptanalysis of Reduced-Round Midori64 Block Cipher (Extended Version)
Impossible differential attack is a well-known mean to examine robustness of block ciphers. Using impossible differ- ential cryptanalysis, we analyze security of a family of lightweight block ciphers, named Midori, that are designed considering low energy consumption. Midori state size can be either 64 bits for Midori64 or 128 bits for Midori128; however, both vers...
متن کاملBlock Ciphers - A Survey
In this paper we give a short overview of the state of the art of secret key block ciphers. We focus on the main application of block ciphers, namely for encryption. The most important known attacks on block ciphers are linear cryptanalysis and differential cryptanalysis. Linear cryptanalysis makes use of so-called linear hulls i.e., the parity of a subset of plaintext bits which after a certai...
متن کاملElastic Block Ciphers: The Feistel Cipher Case
We discuss the elastic versions of block ciphers whose round function processes subsets of bits from the data block differently, such as occurs in a Feistel network and in MISTY1. We focus on how specific bits are selected to be swapped after each round when forming the elastic version, using an elastic version of MISTY1 and differential cryptanalysis to illustrate why this swap step must be ca...
متن کاملOn Elastic Block Ciphers and Their Differential and Linear Cryptanalyses
Motivated by applications such as databases with nonuniform field lengths, we introduce the concept of an elastic block cipher, a new approach to variable length block ciphers which incorporates fixed sized cipher components into a new network structure. Our scheme allows us to dynamically “stretch” the supported block size of a block cipher up to a length double the original block size, while ...
متن کامل